{"cells":[{"cell_type":"markdown","source":["## Empirical modeling\n\nOur goal is to learn from data through construction of statistical models. Explicit in this is statistics which demands understanding and adherence to rules of probability. In this section, we will lay out the basic foundations of probability and give examples to assist in our understanding. Our general flow will be to understand the rules of probability and how to manipulate them, move to probability distributions and descriptive statistics, touch on likelihood and Bayes, and end with a discussion on inference. \n\n
\n
\n
"],"metadata":{"application/vnd.databricks.v1+cell":{"title":"","showTitle":false,"inputWidgets":{},"nuid":"902dfd95-5093-43f3-a24e-ef255977893c"}}},{"cell_type":"markdown","source":["## Principals of Probability\n\nIn this section, we will lay out the principles guiding our models -- probability and statistics. \n\nOutline of discussion:\n \n* Stochastic processes -- chance regularities\n* Belief and probability\n* Rules of probability\n* Factoring joint probabilities\n\nGeneral references:\n \n+ Statistical Inference (9780534243128): Casella, George, Berger, Roger L. \n+ Probability Theory and Statistical Inference: Empirical Modeling with Observational Data (9781107185142): Spanos, A. \n+ Bayesian Models: A Statistical Primer for Ecologists (9780691159287): Hobbs, N. Thompson, Hooten, Mevin B. \n+ A First Course in Bayesian Statistical Methods (0387922997): Hoff, Peter D.\n\n
\n
\n
"],"metadata":{"application/vnd.databricks.v1+cell":{"title":"","showTitle":false,"inputWidgets":{},"nuid":"09b2e8f4-87bf-4453-befa-034fa81b7b70"}}},{"cell_type":"markdown","source":["## Chance regularities\n\nThe processes we are interested in are non-deterministic (exhibits chance) where patterns reveal themselves (show regularities) after collection lots of data. Arguably, modern statistics started with quantifying betting odds in dice games such as the sum of spots (for example, see [Feldman and Morgan](http://jse.amstat.org/v11n2/feldman.html) for a discussion of HOG). To illustrate this, consider a game of dice where we throw 2 dice and sum the dots. Let's simulate this in python and look at the data."],"metadata":{"application/vnd.databricks.v1+cell":{"title":"","showTitle":false,"inputWidgets":{},"nuid":"abde7c1a-b4ff-4738-aab7-b128564ebe95"}}},{"cell_type":"code","source":["## simulate 500 rolls of 2 dice using random sampling with replacement\nimport random\nimport pandas as pd\nrandom.seed(13457)\ntotal_rolls = 1000 \nnumbers = range(0,total_rolls-1)\nevens = list(filter(lambda x: x % 2, numbers))\nodds = [x+1 for x in evens]\n\ndice = [1, 2, 3, 4, 5, 6]\nrolls = random.choices(dice,k=total_rolls)\nrolls1 = [rolls[i] for i in evens]\nrolls2 = [rolls[i] for i in odds]\n\ndf = pd.DataFrame({'die1' : rolls1,\n 'die2' : rolls2})\ndf.loc[:,'dots'] = df.sum(axis=1)\n\n## look at the first 10 dice throws\ndf.head(n=10)"],"metadata":{"application/vnd.databricks.v1+cell":{"title":"","showTitle":false,"inputWidgets":{},"nuid":"a7cd2ca0-eacf-4722-be8d-2ac1397133f9"}},"outputs":[{"output_type":"display_data","metadata":{"application/vnd.databricks.v1+output":{"datasetInfos":[],"data":"\n\n
\n \n \n | \n die1 | \n die2 | \n dots | \n
\n \n \n \n 0 | \n 6 | \n 2 | \n 8 | \n
\n \n 1 | \n 6 | \n 4 | \n 10 | \n
\n \n 2 | \n 1 | \n 6 | \n 7 | \n
\n \n 3 | \n 5 | \n 3 | \n 8 | \n
\n \n 4 | \n 3 | \n 5 | \n 8 | \n
\n \n 5 | \n 5 | \n 2 | \n 7 | \n
\n \n 6 | \n 1 | \n 6 | \n 7 | \n
\n \n 7 | \n 6 | \n 5 | \n 11 | \n
\n \n 8 | \n 2 | \n 4 | \n 6 | \n
\n \n 9 | \n 6 | \n 6 | \n 12 | \n
\n \n
\n
","textData":null,"removedWidgets":[],"addedWidgets":{},"metadata":{},"type":"htmlSandbox","arguments":{}}},"output_type":"display_data","data":{"text/html":["\n\n
\n \n \n | \n die1 | \n die2 | \n dots | \n
\n \n \n \n 0 | \n 6 | \n 2 | \n 8 | \n
\n \n 1 | \n 6 | \n 4 | \n 10 | \n
\n \n 2 | \n 1 | \n 6 | \n 7 | \n
\n \n 3 | \n 5 | \n 3 | \n 8 | \n
\n \n 4 | \n 3 | \n 5 | \n 8 | \n
\n \n 5 | \n 5 | \n 2 | \n 7 | \n
\n \n 6 | \n 1 | \n 6 | \n 7 | \n
\n \n 7 | \n 6 | \n 5 | \n 11 | \n
\n \n 8 | \n 2 | \n 4 | \n 6 | \n
\n \n 9 | \n 6 | \n 6 | \n 12 | \n
\n \n
\n
"]}}],"execution_count":0},{"cell_type":"code","source":["# view the first 50 throws\ntplot = df['dots'].head(n=50).plot()"],"metadata":{"application/vnd.databricks.v1+cell":{"title":"","showTitle":false,"inputWidgets":{},"nuid":"ce702825-307f-419f-9864-fd053a19fe24"}},"outputs":[{"output_type":"display_data","metadata":{"application/vnd.databricks.v1+output":{"datasetInfos":[],"data":"\n","removedWidgets":[],"addedWidgets":{},"metadata":{},"type":"image","arguments":{}}},"output_type":"display_data","data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAABWOUlEQVR4nO29eZAk133n932VdV99dzWAAThA4+IMeEACKZGURIgQZiiLlmTZGyHGas2IlYPeCMdKli2vJDs2tF6vLEf4CG2EbW1wKa24IZnSSlpKCskWBqR4aUmJAggemAFITA/OAfqYrp6uriOr8nj+I/NlZWXl8TLrZXXlzPtEMIjp6amju+pXv/y+7+/7I5RSSCQSiSR75E77AUgkEokkGbKASyQSSUaRBVwikUgyiizgEolEklFkAZdIJJKMkp/nna2vr9OzZ8/O8y4lEokk8zz77LM3KKUb3q/PtYCfPXsWzzzzzDzvUiKRSDIPIeRVv69LCUUikUgyiizgEolEklFkAZdIJJKMIgu4RCKRZBRZwCUSiSSjRBZwQshvE0L2CSHPu772vxJCXiSEfIsQ8hlCyHKqj1IikUgkU/B04L8D4MOerz0N4BFK6TsBfBfArwh+XBKJRCKJILKAU0q/BKDt+dolSqlu//FvAJxJ4bFF0h3q+Mxzb5zGXd/yHPVG+Mxzb+A04oZ7Qx1/9Ozp3LdIvrt3gr+9dnjaD0NyCyNCA/+HAP6/oL8khHycEPIMIeSZg4MDAXc35i+f38Uv/ME38Xq7L/R2JcCffuM6fuEPvolvvXE89/t+6vIufvEPv4nLb3bmft8i+Zefewm/9MffOu2HIbmFmamAE0L+BwA6gN8L+h5K6ScopY9RSh/b2JiaBJ2Jwci6COiN9IjvlMTlsDcCAFy6sjv3+z7qawCAq/vdud+3SPpDHYfd0Wk/DMktTOICTgj5GICPAPj79JSudYe6CQDoj4zTuPtbmjYr4Jf35n7fnYFVwHcOsl3AVc3EyVDHyH6dSiSiSVTACSEfBvBLAH6cUnpq+gUr4Kos4MI56lsF/KX9Lq7NuZB21FukgOvW6/JmX3bhknTgsRF+GsBXATxECHmDEPKzAP5PAA0ATxNCvkEI+VcpP05fhpr1BhlosoCLpt0b4e7VCgDg0pX5duGdgSWJ7ez35nq/olE1q8FoywIuSYnINEJK6Ud9vvxbKTyW2LAOXBZw8Rz1NJy7o4nlShFPXd7FP/rg9tzum3XgL9/oQTdM5JVszpuxBoPJURKJaLL5zrBxCriUUIRz2BthtVbCxfMtPPfaTex31LndN9PAR4aJN44Gc7tf0aiygEtSJuMF3HqDqLIDFwqlFEf9EVZrBVw4vwVgvjJKR9WxVisCyLYOrtoNxpEs4JKUyHYB16SEkgYdVYdhUqxUi3hgs45712vzLeADDe++exlAxgu404Frp/xIJLcq2S7gjoQibVoiYR3jaq0IQggunGvhqzs3HG06bTqqhrtXq1ivFzPrBaeUOgX8SB5iSlIi4wVculDSgLkmVmwZ48L5FjSD4vMv7qd+36ZJ0R3qaFYK2N6oY+cgm04UzaAw7ekIqYFL0iLjBdz2gcsCLhSnA69aBfzRu1ewXi/NZajnZKiDUqBZzmN7s46r+91MZqIwDzggO3BJemS7gGvShZIGbZeEAgC5HMGT51r4wnf2U/+wZA4U1oEfD7RMdrDun1MWH78kG2S7gEsJJRWOPBIKAFw830JvZOArOzdSve9jVsDLBWxv1AAgkzIKay5yRLpQJOmR8QIuXShp0O5pKCo51IqK87X3ba+hXsqnLqOwg9JmJY/7N+sAshlqxTrwVrMsJzElqXFLFHCpgYul3Rs6DhRGKa/ghx/exNNX9mCY6WnSbIy+WS7gzqUKyoVcJq2EbIz+jqUyVM2UMp8kFbJdwFkWinxzCKXd0ybkE8aFcy0c9kb4+mtHqd0368CXKgXkcgT3rdczWcCZvHfHspUnc9gbnubDkdyiZLqAq1JCSQU2henl8Yc2UFRyeOr59DLC3YeYALC9mc0CzjrwO5fKAKxsGYlENJku4DKNMB2OeiOsVKc78Ea5gPffv4ZLV/ZSs/Z1VB2EAI2SlbO2vVHDG0eDzMlk7PHesWR14FIHl6RBtgt4gjzw3/jsd/E3Gd9TeNzX8N/94TdTm4xs90eOhdDLxfNbeK3dx3f2TlK5785AQ72URy5n6e/3b9ZBKXAtY04U5gO/c5l14MkLOKUU/+zPLuObr98U8dAknHzyy9dw6fL8N1LFIbMFXDdM6PZhWpwO/P/+/A7+4O9eT+thzYW/efkQf/jsG3j2VfFatG6YOB5ovh04ALzrzDIA4JUb6RTUjqqhWR7LN9sblhMlazKKI6HYGvgsXvDjgYbf+cor+MSXrgl5bBI+/tUXd/D7C14rMlvAR4b1BiGEf6WaZpgYGWbmioGXPTvaNQ1/8fFAA6UI7MCrtrUwLdmqM9Ad/RsA7l2vgZAsFnDr57PZKFte8BkkFFb85zFIJbEY6SZudEfYPZ5fjHISMlvA2aDEUqWAoW7C5LC2sUK/k9HxbAZ7UaUx4ec3xOOmwgp4SgFiVgc+3jNSLig4s1LJ3DAPK7SVooKVanGm3xX7ncxjkEpisX9ivcf25piDn4TsFnBb/162uzV39kQQzG7YGxnYXfBfTBjssaeRscGiT1cDJJRyIe0OXJvowAHg/o165oZ52OuzXMhhpVacsQMfn3WcxpLp2xFWuA97I8cSuohkuIBbP9Qlu9DweMF7I9357yzvW9zvWJ7iNHKm27ZfOUhCqdgFPK1L+RNVn9DAAUsHv3bQ5brKWhRUzQAhQFHJYXXWDtz+t4/es5z6IJXEYq8z9u0fnCyuhz/DBXyyA+fpCN1FPmuaqpvdFDVwpwMPKOAFhUDJkdSGp44HGpqVyVWt25t1DHUT129mZ72aqhko5XMghGClVpipgDML4kffc0/qg1QSC7f2vcgySnYLuK2BL1dtCYWjgPeGrg48wwV8j2ngKUgo7FKf/Vy9EEJQKSipSCi6YVpZ4D4dOJCt35mqmY7ctForznS1dNQboZTP4UffsZX6IJXEwl20d49lBy4cJqE4HTjHoVrfLjoFhWSqGLjpDXWc2B9E6XTgI9SKilN8/CinVMC79vNaqngLuJVKmCUdXNUMlPPWz3ClamngSQ/O2z3Llz+PQSqJxW5HRcM+TF/k87IMF3DbhcI0cI6C0h9a3/PwVjNTxcANezHVikoqh5hHvVGgA4VRLSqxhqd4cYKsPAV8rV7CSrWQKSeKqpsoF6y312qtCMOk6Kh6xL/y56g/noy9cM4apHpxN51BKonF7rGKh1oNFPM5KaGkwVQHzlPA7UPMd5xZwl5niJM57XgUCXsxPXxHE0d9TfjBXtgUJiMtCcWJki3np/7OWq+WnQ9dVTOcqxhWfJNeMbV7I6zVrdv4kXObIES6UdJm/2SI1lIZrWZJFvA08GrgPIdqzAf+zruWAGRvPBsYF/C339GwuzqxH0JBOShuysWUCrgnyMoNc6JkBVUzUGIauF18k55ZtF2/k81GGd9zzwouXZE6eFpQSrF7rGKrWcZWs7zQwzzZLeB6/ENMVsAfsQt4ljo6BjtQefsdTQDih3n4OvBcKi6UcQfuU8A3a7jRHeFmRkKhhpqJct6WUAR04Kue7UiX3+zg9XZ/9gcqmaKj6hhoBraaZbSaZdmBp4HjA6/E0MBHVtLdg60G8jmSSR18zz5cucvO2BCtgx/1NC4JJQ0f+FgDn5ZQ2HaerHzoDnVjwoUCJPuw1QwTHVWfuCq6cG4LAPD0FSmjpAEr2K0luwPvqAt7aJzhAp5MQqkWFBTzObxtrZqZYuBm91hFq1l2FQVxEspQN9Ad6tEFvKhw58/EYbxOzV9CAbIzgGXZCK23FzsUTvJhe7PPfPnjn8nZ9RoeajXw1IIn5WUVJplsNcvYsjcqseZi0chuAdfiD/L0RzqqTs50PVOuBsbeiaXNsSIr0krIlg5EauBpHWIONBAC1IvTHfiZlSqKSnbWq6muDrxWVFBUcok+bIOyaS6cb+HvXmnLjfcpwJxeTEIBrPfdIpLdAm5LKPVyHjnCr4GzNL37N+t49bAHzUgnlCkt9rwduEAJhRUDv208blKTUFQdDVcWuBslR3Dvei07BdzlAx9PY8YfCHF+J54P1Yvnt2BS4LMvSBlFNPt2Ad9slpwCvqgHmRku4KaTNVEpKHxZKEMD1eK4A9cMmqmDINOk2D8ZYmuphEpBQSmfE9uBs24vogPn/XnHxS/Iys32Zi0z5xZuCQWAnUiYoAPv+Xfg5+9s4q7lirQTpsBuR8VytYByQcEWK+ALepAZWcAJIb9NCNknhDzv+toqIeRpQshL9v+vpPswpxnqppM1USnm+bJQNN3pwLftQ7GsFAQAuNEbQjcptpplEELsEe00OvBoDXygGcIPdo4H2tQUppv7N+p4rd1f6HQ4htsHDlg/0yQaOLvC8v5OCCF48lwLX37pwJlvkIhh93joFO7NZgnAOL5i0eDpwH8HwIc9X/tlAJ+jlD4A4HP2n+fKUDNQsi9RK8UcVwG3OnDr39xnj2dnSQffsy2Em/aLa9acaS9RWeCMckGBScdLNUTh3cbjZXuzDpMCrx4u9lUTpdRqMFwFfKVWTHS1xP6NXzbNhfMtDHUTX/ruQfIHK5lir6M60km5oGClWljYDnz6tMgDpfRLhJCzni//BIDH7f/+FIAvAPglkQ8siqFrVJn3kn4wMtCyP1Gb5QI2G6XMaKrA5OEKYIckpaCBL4d0wYArUnZkOh+iIugMdJxdrwb+/diJ0sWDrQbXbf76//sC/s1/eMX37+7frOMvfu4HQMi05j4L7ixwxlrC39Vhb4RGKe/7c37v2VUsVwt46vIePvzIHckfsGSC3Y6Kc/acBQDbC76YgVaRBTyAFqX0LQCglL5FCNkM+kZCyMcBfBwA7rnnnoR3N43q7sA5XRG9kY6ay+Fw/2a2xrOZP3Vrye7Aa0W8cSSuGz3qjbBUKSCvhF+YVVxr1ZYQXuzjENWBr9etD9+jPr+W/NxrN7HRKOHH332n5+tH+JtrbbsREPchBIwP1N1Fd6VaxPFAg26YkT9fN2HZNHklhycebuHpK7vQDBOFGLcr8UczTNzoWmP0jEUe5klawLmhlH4CwCcA4LHHHhMmmjINHLBtbZwdOCs+gNXR/ck3roNSKrwLS4O9jgolR5xCtlqdLWfaS7uvYS1CPgHGHbhoK2HUIWatZN2vOxY4iu5Qx9vvaOCXPvzwxNc/9ZVX8DfX2ugN9RQK+HQHvlorglJL51+zf388tPtaqKR18XwLf/z1N/C1l9v4wP3ryR+0BABwozsEpXCu1AHrivfKW51TfFTBJP3I3iOE3AEA9v/vi3tIfFgaoy2hFPlsbb2Rjlpp/Jm1vVHDiarjoLuYl0dedo9VbNRLUGyb3WqthI6qC7NC8iQRAq61agKdKLphojcyQjtwdvV0ErOA10vTfQr7WjfGbfHCXovl/KQGDsQf5jnqjbAakM0OAD/4wAbKhZwc6hGEe4iH0Voq40Z3uJCW46QF/M8AfMz+748B+FMxD4efoR5PQjFMClUzne4RGDtRsjLdt9tRJy7tmF/7ZgxJIYxDjiArYFJCEcWJGjxGz8jlCGpFJVYH3htOfmgzamkWcNslM+FCqSabnG1HfKhWigo++OAGLl2WGeEicMboXQV8q1kGpYu5Wo3HRvhpAF8F8BAh5A1CyM8C+F8APEkIeQnAk/af58pQG0soPAWc/T27DAeyt+llr6Oi1Rhf2s0you3HUW8UOcQDpLMXMyzIyk2tlEc3Rq72SVQHnjCjOww/CWXF/rnGHeY56o8CF0wzLpzbwm5HxbfeOI75SCVenA7c1ShtLdlWwgXUwXlcKB8N+KsnBD+WWAx109mYUS4qkRt5mFe24jrEvGOpjGpRyVABH+L771tz/jzu6mYv4JRStPt8EkolBQklaJmDl3o5jy6n71kzTIx007+A26+dXgoeakdC8fjAgXgduKoZ6I+MyN/JE2/fhJIjuHRlF++6ezn+A5Y47HaGKChk4kPTGadfwAKe2WNrr4QS1Q2ybTw11yEmIQTbG/VMDPOomoHjgTZxabciMA+lPzIw0s3Ibg9IR0IJW+bgpl7Kc0so7Pv8JJS6fSXWHYofChoX8MlJTCDe1dJRwBCPl+VqEd9376qcyhTAfkfFZqM8EeewyOP0GS7grkPMQvRkIEvPqxYnHQfbG7VMLHbwO1xhb+xDAQW8HTCy7UcqBTxkmYObegwJhenqdZ8PhXrJup80JRS3jbBcUFAtKrGulpzfCceH6oVzLby0383U0otFZLejTjhQAOtKt6AQ7C6gFzy7BdytgRcVGCaFZoQVcOuNWvUk3W1v1HH95mDhx5F3O9PaHJvOE9GBO90eTweeogYeNkoP2Bo4bwdu/079JJQklkRehj6HmIA9Th/jd8XSIaM6cAC4cN7KCL8kM8JnYrejTrzHAOvwfLOxmF7w7BZwl4RS5vAlB3bgthNl0bvw8en4uDso5RXUS3kh05hODkr9dDTwY84OvBGjgLPu2reAJ7Ak8jL0OcQE4k/OHtoHnjwF/M7lCt5x15K0E84IS/v0srUkC7hQ3IM8PB1hUAeelU0vfvYmIH5XF0ScDpz93MVKKDpyZPKMwo9aDA28G6KBJ7Ek8uJnIwQsKSReB86ngTMunm/hudduOnGoknicqBp6I2NCpmSwzTyLRrYLuDPIYxeUkI4wqAN/21oVOWLlaywyu8dD1IoKGh6b3UqtiLYAHzhzR/Bo4LkcQVnwXsyOak1hRk3EWgWc735ZAffrwNltpaOBB0socTrwdt9acBElKzGkjDIb3qgKN5vN0kImEmaygOuGCcOkEy4UILwj7LECXpp8U5XyCu5ZrS58KuGeZ4iHsVotCOnA270hlByJdIEwePNneOkMwnNQGI1yHiPD5IqUZd213yEm+zqvJTEOjg88P/n2sjpw/g/bo94Iy5WCM3kbxQObdZxdq8oCnhAWWLXZ8O/AeyMDJ6q4FYYiyGQBZ2lv7iwUILyADwIkFICtV1vwDryj+l7arQjKBG/3NKxUi9yZMKKXOnRUPXQKk8EkFp4unFkE/Va0AfEsiXFQNQP5HJkKrVqtFdAd6tx55ry+fAYhBBfPb+GrOzecQ2EJP35DPAz2tUXTwW+JAj6ONw3pwO03c8UnuGh7s45rN3owzMUdRd499i/gq9VkiwK88E5hMsrF0+nA62V++x/7nlrJX1ePY0mMg7WNZ/o+x759vuJq5aDwF3DAygjXDIrPvzj3eKLM441rdjP2gi+WlTCjBdyO6yywhQ4cHbhmoFzI+V6O3r9Rx0g3hUazisRapaY6ixzcrNSK6I+MmS197T5fDgpD9F7MqChZxngAJ7rw9kY6yoVcYHxrHEtiHKyFxtP3GXdyNioHxY9H717Ber0kZZQE7HVUNMv5icRSxtaCTmNms4Br/h14qAY+nMwCd7O9ybbzLKaMctQfQTMotprTMaTjEe3ZunCrA49XwEW7ULgklBL/CPyJ6p+DwqinVcBdWfVu4mbX8OSgeMnlrFVrX3hxP5XF07cyu8fTHnBGa0F3Y2azgOuTk27scrUfIqF4s8Dd3Le+2KmEfkM8jBVBeShHMfXWSlG0Bs7bgfOHUPUCgqzct5XKII82dki5WYvxYUspxVEvPAs8iIvnW+iNDHx15zD2v72d2TsZ+nrAAev13iznZQcuAkdCsTtwZg0M6zi823jcrNSKWKsVU+/Aj/taoq4oyAMOAGv12RMJTZPiiHOZA6NcUDDQ+PKRu0M9tFBqhon+yOCyy8XJ8Q6KkmXEsSTGQdWMiSxwRpwOvDcyMDLMWOcSjPdtr6Feyqc+1NOL+L1mjaAhHsbWUnnh8lAyWsDtDty10AGI9oEHdeAAcO96DS/fSLcD/6nf/A/43y99J/a/YwcnaXXgJ6oOw6SpaeA/9+nn8It/+M3Q+weipzCBsSWQp4AHRcky4lgS4xCkgbNdozy/q3aXDfHwb+9hlPIKfujBdXz5pRux/20cfv73w3+vWcIwKQ66Q98DTMYirlbLZgF3RpVtCSXPN0of5EYArES3TgqOBMaJqmHnoIdXEmxU3+2oIGS8E9LNqoBEwjZn6p2bODbCN476+ObrNwP/fhxkFUMD5+zAwwp4HEtiHIJcKHklh6UKn29//DtJtnP0zEpV6Lo9P76zd4LX2ot58B+XG90hDJP6zlowthZwuXE2C7hHQsnlCEr5XGQBrxTC9FAF3WF63lmWtZKk0O53VKzXS75La5cqBRCCmaYx2ZKB2Bo4ZwfeVXW8eawGFl0nB4VDA2cyGE8H3uWQUNjjE4mqGYF7Nlc5J2ePYiQR+tEs5zHQrIjgNKCUYq8zvGX85n5pn162lso4sAv9opDRAj4d11kpKqE+8P5ID+3A6+V09FAG09eTBE8FDfEAgJIjWObs6oJgY/RxHA/lGC4UVmyDJConC5xDQlFyBNWiwn+IGTJZ2oghx8RB1fwlFABY4ZycbcfMQfHCfpZpTQ7e7GsY6aaziCPrhHnAGZvNMgyT4sYC7dDNZAFn2mvJNaocZWvrj4ypHBQ3aXmCGayAJym0uxGHKysxMza8ON1ejMv1SkHBSDcjuxFKqRNjEHRI7Gzj4ejAAfvwUYCNMI4lMQ6qZvoeYgJWQebJb2cHnUlcKMD4Z5mWLMgK3omqwVygjjQp+z5pn162FnCxQyYLuPcQE2AFPPhysT/UfcfoGY1SHiPdTO2Sk239uTnQYl+C7XVUZy+fH6sxU+68JNLA7QCxqINMVRsX+aDNR+MOnC+HpVHKOwefQeiGiWHAOjVGWnsxraA1/wLOm0jY7o2QzxE0Qh5/GOxnyc4XRMMKuEnTWUs3b3Y7KpQcwZrPORNjawG94Nks4E4HPrnxJOhQjVKKvhbdgQPpBPwDcMKyKB1rvjyomoGjvhZ6aTdrHspRb4RSPucbMxAE2y0aJaO4r2qCO3B+DRzgi5RlcliYBh7HkhiHYYiEwhIJozbIM18+bzaNl3EHnk4BdyfzpXn4Py92j4fYbJRCg8NadhO1SHG92SzgniwUwNbAA4qJqpmg1D/IilFL6c0MWD7nVw97uGu5AiDeZvKDEzshLaSAr1ZnK+Dt3ghrMYsF71KHiQIeMCjVUTVH2+ahzuHfPrEPpMM62DiWxDhYNsJgCWWkm6FDZ4D1O4k7hemGaeBpadRuN0ZaXf482euEy5QAsF6zCrzswGfEt4CHaODjZQ7BBaKRYgF/vd2HZlC85+wKgHibyXkOV1brVqBVVFcXRNwpTIB/rRrrlO/bsHz2fvJRZ6CjWc5zf4DUSvnITTo8HXgaV11stV+QBr7COY1pTWEmsxAC6Xfg7iJ2KxTwMKMAw1qtVlqoQKuMFnADiieuM0xCCVrm4CZNCYXJJ++5dxVAvKGbsIhLxmq1CM2giT982jFzUICxBh7VSbLH9O4zyxgZJl738Q2zZQ681EvRm3SYJTTMeeSsVRMoAfhtpHezyrmd/rA3TOxAAdLXwPdszRi4NSQUawozemhq0YZ5slnAXQuNGWESyriAR19Op7EjkR3eveesVcDjjL2HjdEz4saUejnqa7H9xjwZ7MD4gPCdZ5YA+OvgnYHGvXUGsBcxRBZw63E1QmyETLYR+aEdtI2Hwd2B97WZCniloCCfI7HOW+Kwe6zi7FoVQPY78N5Qx8lQDx3iYSzaarVsFnDdp4AXggd52Cm5dxuPm3qqHXgXm40S7lm1XvBxO/BKQQndlMOm9ZJaCQ+78bs9ngRIYPyzf+fdywACCriqcx9gAnyWT/Z7DJNQ2N+LdFGouv9CY8YqRx6KYVLcTJBE6IYQgmalkN4hZkfFg60GgPRkmnmxxyFTMhZtuXFGC/h0XGeYBs6klWqIyyKtqTzAKlrbG3WUCwqqRSWW5W+3Y13ahenDrHtOYiXUDBMdVY/dgbNcmbDhKWAsT5xZrmC9XvQ9yOwMNG4LIcBn+QzbSO+9rXQklIBDTCe7JrjodQYaTJrcA85olvOpHGKOdBOHvREesBeCp9XlzwuecyZGq1nGiao752qnTUYL+HRcZzkk3pSnG0vLUkYpxc5+18kcX6nGG7rZ7wRHXDJmyQS/aY91x83c4O7AXT/77Y06rvp04Mec23gYPOcVUQuN3beVhoTivUJkNMp5KDkS+mGbxJfvx1JKHfj+iVXw7lyuoF5K50NinjgyJY+EYlsJF2WYJ5sF3E8DLygY6qbvVBgrMmFphGkFGx10h+ioOu7fsLqV1Vq8oZvdTnDIPCPuogA3SSf+4hRwQqwD5O3NOq7ud6fcMnEPMXksn11uCUUR+qHNFhoHDfLkcgQr1ULoNOasOSiMZqWQij7tPpdplvOZl1CYqySqUQKAVmOxhnmyWcADJBTA8uB6cSxlIYeYecUaZBEdaMUkg237cnOFM8wIsLp3HntTo5RHQSFcI9penMyNuIeYHBG+gB3pWrQsgtsbdRwPtIkrhaFuQNXMUI3fC4/lszfUUcrnfAPA3NRLBefAUwRsyCzIRghET2POmoPCaJYLqThE3AUvrQ+JebLXUVEv5SOv1oBxl74oOnhGC7i/CwXwt7UxvSqsAwfY4ZjYDpwd2m2zDrxa4B7kYYFBUZ0BIYR7RNsL+zer9fR84KwL3t5gq+vGOnicLHAGr4TC84bksSTGgTUQQYeYwHgaM4hZc1AYzUo+leLq3hCV5kHpvNjr8FkIAfduzMXwgs9UwAkhv0AIuUwIeZ4Q8mlCSPQ1iAB8NfCQyUAeHzhg6ZOiNfCdgy6qRQV32J/cK7Uit90vbJWal9WE4/SO3hqzAy8oOeRzhGuUnlk02YeY24kSd4we4LN8uu836rbSkFCCDjGBaBktSTqkH1YHnoIG3lFRzOewUi1Y95FxDZxHpmTUSnk0Svnsa+CEkLsA/ByAxyiljwBQAPy0qAcWRqiE4lNQ+iMDRSX6cromuBsDrG5ze6PuuEhWq0V0hzrXFpg9joQ0xkq1mEwDtwvJcoJiYS11CA//6g4Np2O+a7mCciE3EWrVcTpwfgmFx/IZtsTajegUyigXCmB/iEd04OVCLvKKMYpmpQBVE79xyO2Malayr4FHrVLz0logK+GsEkoeQIUQkgdQBfDm7A8pGr9DTNZd+3WE/ZEe6gFn1Ir8b+aRbuIvn9+NHF/f2e860gEwlipucujgPEM8zu0m7cB7GhqlPIoBrokwyhxLHXpD3dGsczmC+9brM3fgPBJKVJQso14Um0I57sBDJJRqEUf94BjWw+4IawlWqXlh5woibZKAvb3dfk1aHXh2C7hpUuyfhK9S89JqlmIdYt7oDvHJL1/znUKelcQFnFJ6HcD/BuA1AG8BOKaUXvJ+HyHk44SQZwghzxwcHCR/pC78B3nCJZQwDzijUc5z+8A//519/KPffRZf/G7wc+qPdFy/OXCkA8DtA44utuywaLMR/eJaqRVwlGArT7s3xHLCzA2evZhddXKRxvamp4Db3VusScxSdGHqjfglFEDcAJfKcYh5x7K1GODlQ/9wLyubJnkOCmMcaCW2wO51VCdcrVkp4GSoZzYTfO9EhW5SR+LkodUoYz+GBn7toId/8Rcv4JWA3/cszCKhrAD4CQD3ArgTQI0Q8jPe76OUfoJS+hil9LGNjY3kj9SFn4RSjuzA+S6neafymPRw6cpe4PewNWrMgQK4x945CnhHxXq9yNUdr1aLuNkfxc4ab/e1RItzAb69mN61ZtsbNbxxNHAKnbPMIc4hJofl0/rg4N+xKUpGGerRGvjjD20CAJ4OeO20e6OZLYTA+KpG5KCN1xnVLOdBKdBdkMGWuDjvUVeTFcVqhATmpS3IFurHLBLKjwB4mVJ6QCnVAPx7AO8X87DC8TvEjNLAeaJK6yX+Dpx1jk9f2QvsPlineb+rgDtDNxwvAJ6IS8ZKrQiTxu+2jnojrFaTdXs8EkrXJaEA1s+C0vEbx1nmEENC4bF8docGl4QiOoUyapAHsM4CHrmriUuXd33//qgfP1zMDyfQSqCE0lF1qJo5LuApdfnzwnGJbfIX8JVaEf2REXn1yTgSNJjlxywF/DUA308IqRLrhO4JAC+IeVjhDH22focNlvSHMQo45xuZdTUHJ0M8F7BxfWe/ixwB3maH/gDxxt7jFPA4Hwxu2r34UbKMsPwZwF6nNtWBTzpROgMNBYWEasZ+RFk+rY30HOcegjNwVN1AMZ9DLmQxAABcOLeFr79203c5gOgOXGRx9U4tju8jmx341f0uGqU8Nhv8V6E8eTZuRPn6/ZhFA/9bAH8E4OsAvm3f1icEPa6w+7UlFH8fuJ8roq+Fr1Nj1Ep5DHUTmhF9oNUZ6KgUFBQUEthJ7Rz0cM9qdULuWba7XZ5M8EQFPOZB5tEMoUnVYj60CxnqJnSTTmjR967XQIirgKvWGH3czTNh/m3dMDHQjFgSiqgUyqFmoswheV08vwUAePqFSRlFM0ycqLqgDlx8Jrh3ezvr8rOah7Jz0MV9m/VYr7+VGOdYgNWsVYtKqKyWlJlcKJTSX6WUPkwpfYRS+g8opam723WTwqTTl6hh8aZxJBSArxvrqBo2GiW8b3sdT132d6OwECs3BSWHZjkfOcwz0k3c6I64T8fjvqgA63K/PzJiD/EwojRwvzySckHBmZWKM8xzPNBj6d+MMP82W6LMJaGkcIjJ80Z9sFXH29aqeOryZAEXNcQDjA+GRXbH3uCntBdHpM3Ofm/CJcaD04FzznO0+2KuqPzI3CTmeBtPDB94DAkF4NNDWYLehXMtvHLYx0uehb2GSXHtRs9XW1vlGKdngUFhy4y9twnESyQ8SjjEwyiHJEAC46LoLaTbG3XHC94ZaLHG6Blhlk/eICtAfAolbwEnhODi+S18defGRPE7EjTEA1hNTlHJCS2ubBfmpj2bsJRhDbw71LHbUWMdYALx45uPEixM4SVzBdw5JPJopgWFQMmRABshn4QSZ0diR9WxVCngyXMtAJiSUa4fDTDSTSfEys0KR6BVHA844OrAk5yOJ9XAi7nQDpzZ/LxSxv0bdVw76MI0aewgK0aY5dP54OCxEQo/xDS59fwL51rQDIrPv7jvfG38O5ndRugM2ojUwE9ULFcLzofUWKbJnga+sz9tMuCBubZ4m6V2XxNyReVH5gq43z5MwHqxBmWC80oocQ60OnYEaqtZxqP3LE9dCl89OAEAJ0bWzRrH0A3zgPOO+FaKCiqFeFnjTreX+BAzYQe+WcdQN3H95sD5OcYlzPLJm0QIiE+hDFto7OXRe1awXi9NWFFFOxZEB1rtHk8OvTRKeRCSzQ7cm1PEy1KlAELAHR43i9MriuwVcMemNf0m8bukH9kHaTxvZuZa4JlcY4dvgOUo+Pb1Y7x5c+D8PUshvG/dpwPnGHt3OnCOIR6GNY3J/0Zi3XpSfY4V8KBp1CApw+1E6ah6rDF6Rj0kx5t15mEb6RmiUyhVbfqAPQglR/DkuU184cV958ryULBjoSE4LdB7sJ7LESsTPIMa+M5BF/kcmXCJ8aDkCJYrBf4OfAanVxTZK+ABHThgXdJ7N8Q4SYQcXVG9ZBVknm6sMxgXnovnp2WUnYMu1mpF318cG3sPG8PfswODlmN8clvTmDEklO7QeTxJKBcVUDr+nXgJ6oTZodHV/W7iDrweskmHd50aQ2QKpepjcQ3jwvkt9EYGvrpzCEBcFjhDdF63X7xxVgOtdvZ7uGetGpmR5MdKRKIkY6gb6A51IWcafmS3gPvojH6X9CyJMGw7OYN9T5SEMtItmxorPPdt1HH/Zn3iUnjnoBs4HLBSK2Jo30YQ7I0S194Ux4XS7msgJN4Yu5uoSNlewGLhtXoJK9UCrrzVwVA3E2ngYZbPkxiHmNb3iVvqYHXg/AX8/dtrqBUVXLpiffi3eyM0yvlERcWPZqUgzOKnGSZudIdTm2uyGinr5xLjZZUzvpllHskO3CZMQvEv4CwLnGcqzyokUZ7gEzY96Co8F8+38Lcvt51f6tX94BcHTx6KOzCIl7WYI75HvRGWKwUoEUMnQURt5WGyhF8nvL1RxzfsAahENsKQ84og7T3wtsri1qoNdf5DTMB6HT/+8CaevrIHw6TCpjAZIrvjG90hKJ1Ox7R2b2argOuGiVcOe7EPMBkrnOFxaQ7xAFks4CESStnHl+x04FyHmHwduF8E6oVzWzBMir96cR/t3ghHfS3QX7rC4SPd66hcO/q8t9vuxunAZ9PmKhFbeZgs4Rcktr1Rd8bpk9gIw9wjsSWUGCmUUfDaCN1cPL+FG90RnnvtSNgUJkNk3Kt3iGd8H+ls/kmT19p9aAadrQPnaJaOZAGfJMgHDlgFxdsNsst4nmzlvJJDKZ+LfDMf+0SgvuOuJWw1y3jq8m5kvgLzkR4GDPNQSrHXGaIVY7wXsF5UJ0OdOxr1qDfC2gwvrLDhKcA6TKyX8r5j5W53TtJBHsD/vOJkqKOYz3FH5MZJoYzCKuDx3laPP7SBgkLw1OXdVDrwkW5y53aEEWRtzWKk7I4TYhVviIfBFrNExUmLWlAdRAYLuL8PHPCfDBxodjfGIaEAfFt5nAxrV+HJ5QgunG/hSy8d4PnrxwDg6wEHXHkoAZ/gHVXHQDO4LYTO7dZY1niM0/EZur1oDVwPPHtwX7omtREC8HWP9DjXqblvizeFMgpVM0OjZP1olgt4//Y6Ll3ZQ7srugMXNynpdOBTGnj2XChJQqzcrNYKGBmmM/UbhOhDaS/ZK+BaiAvFRwNnHRqPDxyw38yREop/gt6Fc1tQNRP/9quvopTP4a7liu+/H+eW+L/o4w7xTN0u74TYjN1eWP4MYEWMBhVS96XrUiIboXXffu4RbwZ5FLUYKZRhUEpj+cDdXDjfwquHfbx5rDpXaCJg8pQIHXy3M0RBIVOOima5gBNVjx1lfJrs7Hex2Sglah4A/mEe9h6P4yaLQ/YKeIiEUi5OLxhgHTlPHjjAFyk7zrCevM3vu28VzXIeL9/o4b6NemAiXbNsHRwG/fKDOp0o4uShUEpx1JttQizyEDNkK86ZlSqKttMimY2w4NzH1P0ODefveWgIWqumGRSUhm/jCeLJcy0ww5FIx8KSwA58v6Nis1Geel2zLl+UDDUPrs7gQAHcMmj4e+2oP0JToKvISwYLeHDesp+Ewi6NeTbyAHw7EoO2yBSUHJ54u+UJD9PWcjmClWohsFP2BgbxEidkpzcyMDLMmfypURq4N0rWjZIjuHfd+hklsxEGHzh3hxpXlOz4tvhTKMMYb6SP34FvNsp49O5lAGJyUBgi87p3A7a3O11+RmQUSqm16tBnSpoX3ljowxRzUIBMFvBoH7j7YMHZSM/5hubpxjoDDfkc8R0OYkM9UZ/uKyE+UhYYtBHzEHMlRsgOc6uIcKF4h6cY3QgtenuzhqJ9cBwXZvn0d6HwLXNgxEmhDGOc05MsNpRFzIo+xASis0qGuoH/6c+v4OAkOCUzaHs7a2SS+s1Huolf+4sreONI/M5IP250R+io+owdON/V7lGKU5hAFgu4rYEXfS5JKkUFJgVGrk6qP9Kh5Ijv9/vBq4E3K/4Z1h98cBNPnms5IVdBhPlI905UrLgCg3hZrRZBCELfhIzx6XhybS7aBx5ewP+TR8/gp997d+wscGDcgQfZCHkthIC4QCv22uTJA/fjJx+9Cx98cAPvtjtxEThbeSKK67ffOMZv/fXL+PTXXgv8nqDt7bMelP711QP86y+/jE995ZVE/z4uSTNQ3DhW4Ihmqd1LnrfPQ/YKuG4gnyPI+xVw5ooYuQu4FWTFWyR4xqo7Az3Qu1wpKvjX//ljeOSupdDbCPOR7h4PYx9gApYNcr1ecjr4MEScjkcV8N4wfLHwk+da+Oc/8Uii+2aWT78P25MELhRg9gLuLDRO2IG3mmV86h++11kYLALevG4m27GJUC8nqobeyPCV9WbdynPJDoK7dGUv0pYngqsJUwjdNEp55HMkugMXbAv1ksECPr2RnlHxWWzMmwXOsGyE4S/2pBGoblZCgqf2Ai5Vedhqlp03YxgiJsTY7yF4kCdeJxyXRjnvOzUb10YoajO9qkUvNJ435YKCYj4XKW+wg/Pnr3d8pYy9TnA65nj3ZvwO3DApPvvCHuqlPF497OO7e93ofzQjOwddVItK7DMmN4QQywse0oFTSq0OXBbwMUPdCNQY/TrCvmZwe8AByy+uaib0kAOtpAFMblbt4Cm/hch+gUG8tJplx4YYhojY0px9DuDnAx/qBjSDxiqkcfGTuwyToj/iW6fGiJNCGcb4EHOx3lY84/R7HRXMXPL0lT3fvwesw9ap25/hoPTrrx3hRneE/+bJB0EI8FTAekKR7Bz0cN9GLXJvaRSrEdlDA83AUDelBu4mbOeg44oYuTtwnWsKkxE24cdIGoHqZqVahGHSqaLhBAYlLOBbSyWuAt7ujVBQyMwFtlJUnINiN8xSlmYB94uUZa4jb4BW+O3wp1CGMauEkhY8gza7nSHOrFTxYKvuSBoTfx9iba0X7UzwBB+Aly7voqjk8PceO4PvuWclUMIRyU5ITlEcVmqFUMeXc5UrNfAxQ90M7sD9JJRRvA7cGRAJmcwT04H7D92MA4OSSyhHfS1ydPrI3tOX5ADRTdBSB1YM05RQaj6RsnFzUKzv5cvAicKRUGJOYqYNz6j7nn3Vd+HcFr72SnvKIRVmbc3lCBql+IFWlFI8dXkP779/DY1yARfOtQIlHFEMRgau3xwETknHYa1WCnV8seIuO3AXfhvpGX6j3f1RvA6cZyvP8UCMBg5M25DGnU48CyGDHYDtd8KdKKK0uXIh51vA4+ylTErDZwQ+SefPm0IZRdC6v9OGJ2yKhaddPG+Fsn3OteaN/X2znA98LyWJlP3O3glea/cd++QF+//9JBxRzDpC72alVgiVUEQ4vaJYrFcaB6GHmH4SysiINVbN3vhBeqhq61pJEvTcrNX8BwGSjtEzWIcUdZB51NOE5DNUioqvD3weBdxvBD7J/YrrwG0JZeE68DxOQrpjSil2j1W0GiU8clcTdy6Vp7ToqIP1JIFWTz2/B0KAJ96+CQC4d72GB1v1VHVwERZCxmq1iJv9UWCEQNsOq0srBwXIYgHXzMDA/ErRdkV4JJRKQdxQByvsSZcgMIKWEAdFdvLC3mRRBfywNxTSgQdLKEzKSK+Y+Vk+4+zDZPCmUEah6syFslhvq6ju+HigYaib2FqyFohcOL+FL790MNEI7XbCz2Ws5cnxfn6Xruzie+5ZmTgYvXBuC197eVrCEcXOQQ85gthr1PxYqRVh0uDD2/aMO2d5WKxXGgeWCyXiENMjocSxEUZtpu/4LHNIwmpAB+4EBiX8pbccCSWiA+9rQjaf++0hBcZyRJzDxLg0fBYxxF3m4L6t2Qd5ZpvETIuliuVCCfJY73qu+i6ca0HVTHzxuwfO9wQN8TCs5cn8Hfjr7T4uv9lxJpcZF89vwaTAZ19IR0bZOeji7tWqkIPmqPC4o94ISo7MfF4WRuYKuKpFSyhuDbw3MrjH6IFx7GxgAffJAk9CtWj5c72//D07MCjp4WKznEeloDidvB+GSXGzL2ZCzC9/Bkh2mBiXWjGPgWZMWD5ZRx63gPNM4EYxdqEs1tuqWbaiT4N2l3o93u+9dxVLlYLjCDFMioPuMPSqsBlzeTLTuS+c25r4OpNwLqWkg+/sd4UcYALReSjt/ggr1cLMdsUwFuuVxoF1iBnhQrELim6YGOkmqgkklKBkNb9tPEkghPju1ZtliIfdbqtZCpVQOgMNJhVzOl7xSYAEknfCcXAsn64PkK7dBYZNgPreloBIWVUzQYh/zMNpEjVOv+eR7fJKDk+8fROfe2HfsbUaJg3dELUUcyvPpSu7eKjVwNn1yUCpIAlHBIZJce1GT8gBJhCdh3IkeLuSH4v1SuMg7BCTHR4xX3Jf419ozIhyoYjqwAH/PJRZhngYUcM8IreEBGng7KwgjoUzLnWfPJRejCXWbnhSKKNQNQPlPH9sw7xgr9WgaUz2Yb/pShq8cG4LxwMNf/dy23kthXbg5QK6Qz10AI7R7o3wtZfbuHDePy/IT8IRwfWjAUa6mXgLj5eoPJR2ykFWQFYLeMAlai5HUMrnnI6QfYLHsRGyVVxBPnBRGjhg2Yu8BTxKa+Rhayl8nF7knj6/PaSAHShVVFK9fPT7sD1RdRQUEmszPGB34LNq4DEXGs+LqLCp3Y4Vnub+mX3wwQ2UCzk8dXmX62Cddfk8P8PPvbAHk47TF728xyPhiEKkAwVwLyf3/7keCZIpw1i8V1sEQy1YQgEm92I6OmzMLrARcjntLHMQ0YFXizjqj3/5TmBQQg84Y6tZxl5nGHho1RYQZMWwJJTprivtHBTAP0Uwbg6K+7ZEaOCLNoUJRG/l8WsaKkUFP/jABi5d2Rsfcoa8LuMEWj11eQ93LVdw/s6m798XPBKOKEQX8EpRQaWghHTgsy1M4SF7BTxEQgEmD9X6CTpwIPxAq6NqKChESKe16pFQZvWAM1rNMka6iZv94M6A3f+sVAoKRsZ0dkxUlKwI/M4rkn5wCJFQdHMxC3hEB7534n/ucvH8Ft46VvHZF/ah5AjWaiEFnDNStj/S8eWXDuwNRMFXZ24JRxQ7B12s1YpCi+pqrYjD7nQBN01qJxGm50ABMlbAKaV8BVybLOBxO/Cwy2k2Ri9C51ytFXE80Jzix9wAIgo4EOwFZ5d8Qjpw5vzxOByiomRF4JcimPSDQ4SNUNWCp4RPk3F3HCChHPs7TJ54eBNKjuBL3z3AZqMEJUQOG3f54QX8S989wFA3A/VvhlvCEcVVQRkoblbsUDovbEfoQh9iEkKWCSF/RAh5kRDyAiHkfaIemB9sUUOYz7bsSsfr2zp23A48rICLGKNnsA74pv2in3WIh8EkmOACPkSloMT+ufhRLk5PvwJ2J5ziASYw/mA+ESCh8KRQRrGoEkrDWXk2/ZrWDBOHPf8hnZVaEe89uwoguqng7cAvXd7DcrXg3G4QbglHVEb4zkFvpjVqfqwEJBIyo8BafYELOIB/CeAvKaUPA3gXgBdmf0jBjBcah3TgRZ8OPLYjQQlMpuuowcsc4uL1kTqBQTPYCIHxmy1osUO7pwmbDvPz3gP2YuG0O3CfQ8zkEgobp09uXRtqi3mIWS4oKOVzvt3x/kl4eBrrlKOainGkbPBVjGaY+OwLe3ji4ZbvQhYvTML59vXjyO+Not0bod0bCe/AVwMywUWeM4WR+NVGCGkC+CEAvwUAlNIRpfSmoMflC1tZFVcDj+MDB4C6bYnyo5NCB85+2XsdFUuV+KvUvLDR5KAO/Kg/EjKFCQRv5bEWC6fcgQcU8CQfHKxLDUuhjELVF7MDB4LH6aPC09hqwKimgjU1YYsj/u6VNjqqHimfMJiE81kBQz3XBB9gMoI6cJFOrzBmaRfuA3AA4N8QQp4jhHySEDJ1fUII+Tgh5BlCyDMHB7P5Oscb6cMllIFd6JmEEmcSE7D8xWGj9KIKuNOB25/gu8eze8ABywq5Xi86mrqXtsABAyd/xiOh9IbxQsSSwCyfbgmlq+qoJ5BuahEDXDwwH/gi0iz7Z5XsRxycn1mp4td/6h34+993T+jt14p55Ei4hHL5egcAIuUTxkqtiLetVrFz0OP6/jBErFHzY7VWxImqT7llmISysB04gDyA7wHwm5TSRwH0APyy95sopZ+glD5GKX1sY2NjhrsL30jPqBbdGrjhfC0OYVN51j5MsR34oasDdw9TzMJmI3iYR+SePhYU5l3q0FV1Z1FCmjQ8jqGkh6ciFhurCyqhACEdOMeQzkffew8eaDVCbz+XI2hEJBImcYFsNvkWlESxc9BFKZ/DncuVmW/LTdAwTxY68DcAvEEp/Vv7z38Eq6CnRmwJZaiDkPjxnrWSlbHhFxNpdeBipIHlqlXgjpwCHp43EYetpXJgHorIPX3sINStgY90EyPDdCYl08QdKWuaFL2Y69QYUSmUPKgRMwqnyVJAVsluR0VRyQl5PVibf4J/fjsH8V0gvDteo9g56OHe9VqokyYJq8451uTPtt0foZjPxW4e45K4gFNKdwG8Tgh5yP7SEwCuCHlUAfBIKN5DzEoh/jSg82b26KGqZmCkm8I68HJBQa2ooN3TxoFBMx5gMoLG6TXDxImqC5sQ89PA55GDwnBHyrLfV5IPDhGb6S0XyoJ24OWCrz69d2xd9YmwxQZ9SDCSuEBaS2Xshwyl8bJz0BUunwDuq+hJufKoZ01hph2rMOur7R8D+D1CyLcAvBvA/zzzIwqBx4XijjftjQxUE+ihQYFWIsfoGWyztRMYJKoDb5Zx2Bs5H3oMdqknapjBb4lGkkzupLgllJ6TRBj/9yNEQlnQQR4guDve7cwe3eDcR0ikbFIXyFazjJFhhm6+iULVDLze7gs/wATcsdCeDnwOOSjAjAWcUvoNW99+J6X0JymlR6IemB88GniloGCkmzBMikHMLHBGUKDVeIxeXGFi05iiPOAM5irwrlY7EhwyX/ZZojGPbTyMmuvAuTvUnK/FJSqFMgrTpBiF7Gs9bdjGHG8nuy9QtrPuw//nl3SVGe+GqTBeOezBpGLWqHlhbi5vLLQlU6Z/BrSY13sBOIH5oRKK9ZRUzbA78ARv5vL0gAiQTgfOfKTeUP1ZcRY7nEy+8A8Fr3ny84E7BTxlH7h1HwXng5ZJKUmWSPDsQg1juKDbeBjNSgG6SSc+aCmlYjvwSj6wA99hLpCYXTDvjtcwdvYtF4uoFEI3QZngR30NqyHRA6JYzFdbADxvErcmO0hawAM7cHFRsoxV20e6zxEYFAdnnP445Q78lCWUeklxPmiThpcB0SmUUSzqPkyGX9jUyVBHX0B4mvs+gjTwpC4Q3hWBYewcdEEIcN+6+A68oOTQKOenJJ52b4TVquzAJxhr4OE+cMAqKL1Rwqm8on8BZ4dAS4JcKICtgfesDjyfI1gX9KkddOnp+FMFXd4VlBwKCvE9xGzMpYCPNXCWQZ608w9LoYxC1dk2ngUt4Gypg6tDZpO64jrwAnojwzeOIKkLZLNRAiEI3TAVxc5BF3ctV4RER/jhncbUDRPHg/STCIHMFXAmoYSP0gNWRzSwXShxYZfg3s304208YiWU3sjAa+0BNhslYfnZy9UCivnclBPlKIURX+9eTFYE59GB10p59EeW5XNW98ssa9WYxXVhJRSfQCseD3i8+/B/3wDWIE0SF0hByWGtNpsXPI0QKzfeaUyWbZS2BxzIWgHXojtwt4SSuAOfo4TCCukLb3VCV1bFhRBieWg9nUu7N0KjnEdB4NqvSkHx1cDnI6GMLZ+z3u8skbKL34FPh02JSr8Muw/AdoEcJXeBbC2FrwgMwzQprh30Ui3g3g48jSYpiGwVcE4XCmB5wAcjI9FlU81nVRdgvTCL+ZzQNyk7qb520EWrIa6AA2yxg6cD74+wJrgzqBQVXw18Hi4U93nFrPfbmKWAL3wHPr3UYU9QeNr4PvxXt71y2AOdwQXSagQPpUXxVkfFQDOEpxC6WakWJ2yE7TlNYQKZK+BWkQhbGuvEm2qGlceRoICX8gqKSs5xNTBEjtEz2Ke0ScW9kRh+Y8hp+FO9ezF7Qx2VgiJ86s0Pd4ZJd6gjb6/VS3ZbwRk4USz8IaZPd7x7LCY8beo+PFbCWV0graUy9k+SuVCSul/isFYvTgzyHM0pBwXIWAFXNRNFJReqEzsd+NDAQDNQSZhJXS/nHV8xQ+QYPcP9KS3qUpbBxpDd3t809vS5A8SA+UTJMtj9dIe6k4OSdPrNsiQmi5NlBXyRfeAAcNyf1MBF6d+A/0EpYGnQs7hAtppltH2G0nhI6j+Pw0q1CFUznavQQ9mB+zPUozeesALO3BZJOnDAPxOcbeMRibsbFmXnGt9eGapmTnRERyns6asUFKgeCWUe8gngllCMmZdIhKVQRrHoEkoxn0OloHg0cFXouUvQ5p9ZXSBbM3jBr+53sVQpCJcN3ax6hnkcDVwO8kwStpGewV4kbXtPXdIwmVpxWg/tqLpQBwoALFcKYA2j6A7cb7XaYW8ovDNw588A9kb6OQRZAWPLZ3eo2QmIyQt4rZjcRjhc8ENMwB60cX2Y7x6raDXENQ1LAYeYSUKs3LRm8IJb911LNZPEO8zT7llZ+PMINstWAdfMyB8KewMxTSpJFgpg70j0vJlPBprQMXoAyCs554Uv8nIWmB6CGIwMqJopXJvzauCzFtI4OIsYhpbraBbppl4OTqGMwtHAF7mAu7JKdMPEDYHhaYDVLCk5MvEhIcIF0rIjlpMcZO6k7EABpheziFyYEkW2CngMCYXpUIk78FJ+Ko1Q5DIHN0yTFt6B264WdpDZdrbRi30O5cK0C2VeBXx8iGl14LNYF2cJtHIklAVcasxwZ4Lf6I5ghqxSSwIhxFoc4erA3zwezOwCYY1NXC/48UDDwckwlRRCN95M8HZP/DlTEIv7avNhqJsoRrxBCgqBkiM47NodeMI3tHepA6U0FRcKYL0AGqW8cN80Ww7BJu7S8qdWirkJH3hvNM8Cbu+yHFka+CzTn1GZ4P2RHhhruuiHmMDkVh7RQzzOfXgiZdk2nVlcIEuVAko+Q2lR7KS0Rs0LK9aTHbgs4FMMOdLeCCGoFBTnh5m0A/duph/aSwqWUujAt5pl3L1aFX675YKClWrBebOm5U+tFvMTG3lm7YTjwCyfJ6o+8xq3sECrg5Mh3vMvPos//9Zbvv82ax34eBem4AJeLkzE1jIb3ywuEEKItaAk5iGmiPvmYalSQI64NfD5deDzeZcJYqhFSyiAVbgOZz3E9IxVs+EE0TZCAPinHzk3tRRYFO7FDkf9dAo4G6WnlIIQknixcFIsx5CeeCM9g3Xg3hRKAHj6yh56IwNff+0I//G77pz6e1U3kM8Rrm3rp4U7bGpPcPqlcx+VvKcDF+MCaTXLzpUkLzsHPRQUgrtXxK5R85LLEWuc3uVCkR24D0Pd5Crg1aLiFKukh5j1Uh69kQHTPtBKY4yesbVUxr3r6UyKWZ1Luh04O3cY6iY0w8RQNxMtFk5KvZzHiaqhN5pRQikHd+CXruwCQOCCXWsbz+LKJ8B4qQOlFHt2eJpoe513qYMoF0iS1Wo7B12cXavN5UN1xc71ZzHW8/CAA5ks4NFvkkpBATMSJPWBe9eqpZEFPg+sMWTr0vOoN0KOiP8QqhTGm+l7c8xBYdSKeRx0h6B0tvt1LIle95Gq4StXDwGML8u9LPJCY0azXIBhUvRHBnY7qtDwNPd9uF0oV/d7Qg4RW83S1FBaFGmtUfODxUKndZUbxGK/4jwMdSPSBw6Mx+kBJB4ecE/4Aels45kHraUyDntDaIaJdn+ElWpR+Ju24oovmOcyB0ajnHc03Vnut1H2d6F84TsHGBkmPvjgBq7fHKDvkxk+XOCFxgzWfBwPNOFDPOP7yDty43Ffw43uUMghYqtZxkg3ffd6+jHSTbx6mM4aNT9WagUc9TTnKnceY/RA1gq4xiehVFxFPqmE4j3QymoHvtUsg1LrEC6tPX3lgk8Bn2cHXso7yXozDfIEHGI+dXkX6/Ui/rPvPQMAuOYjo6j64i40ZjiTkqqG3WOxY/Tu+xjYy793bohzgcRd7PBauwfDpKmGWLlZrVkauOiFKVEs9ivOQxwJBbByw5MGKtWdRELrcDFNDTxN2Hj+bkdN7XTcvdh4nhvpGW7H0GwFfDqFcqgb+MJ3DvDkuRYebDUAjO1pboba4i40ZjhZJQMde52h8ANM6z6s98eJqgl1gTgLSjgPMq86AVpz6sCr1mIWNkA4j32YQOYKOJ8LhV3Sz+ZIsH4BTA9l1qgk+xZPE/Ym3TtW7RwU8S8s9xKNkzkuc2C4i/Ys9+uXQvmVnUN0hzounNvC2fUqcsT/INPqwBe7gDML7FvHA3SHekoFnAVa6bh60EVRyQlxgbRiDvPMywPOWK0VoZsUr7f7AKSE4stQ5+ty2Pck2cbD8HZjnYGGkuAs8HngzkNp90epXNpNLNGwi9+8JRTGrPdrRcqOddZLl/dQKyp4//1rKOUV3LNa9e3As3KICQAv7VmPX3R4GuDKQxlo2Nnv4ex6VYgLZNMZp+fzgu/sd3HHUnlujQQr2DsHPRCCVOZF/FjsV5wLSilGnDZCVlBmGeposA7cpYFnTf8GrNPxgkKw21Etf2oKnYF7DykrfvM8xKwLLOD1ct75EDJMiqev7OHxhzcd6W57o+7rRFE1Y2GzwBns9fvdvRMA4j3gwKTOfm3GECs3pbyC1VoReyf8Hfi8um9grHkz3/u85gEyU8B5tvEwWAFPmgUOuEa0XS6UrDlQAGvIYLNRxs5+F7pJ0+nAJ1wodgc+Tx+4IAkFsKyETAb6xutHuNEd4uL5LefvtzfruHajNxV4lQUfOJP/XrI/gFI5xLQ/JA67I7zaFusC4R3moZTaIVbzOcAEXAV8vzu3KUwgiwWc5xCTaeAzbKF2QpJcHfi8LotEs7VUxgtvWV1XmhKKqrl94PMrZu5uf9YzikZ5PIH71OU9FBSCxx/acP5+e6OGkW7i+tFg4t+pWnTU8WlTUHKoFhW8emhp+KLH6IFxB/6tN46Fu0C2mny7MfdPhugO9dRH6N2w99U8h3iATBXw6I30DNYJJR2jZ/dTUIhTwI8H2ZRQAKvTun7TKjhp2AgrExKKjnIhN9eRcvZhq8ywTs19Wz07tOqpy7t43/b6hPOIDYZ4dfBhBg4xAavAmtT6oEpqsQ29ffsQ87nXjwAA9280hN321tL0jlc/5rFGzYv7fTWvMXogSwXc2UjPL6HM8gIlhEzkoaSxjWdesAMgAOnYCB0JxZxrlCyDWT5rRWXmke2anUL50n4Xrx72cfF8a+Lv2Vqwqx4dXNXMhdfAgXGBTUP/Bqz3Xj5HcPl6BwBwn0AZY7NRxo3uCCPdDP2+q3NYo+alVlScXb1SQvFhrIHzSyizdODAZKSstY0nexo4MKl1pnF5xz5UB5ox12UODGb5bAj4gGWb6Z96fheEAE++fbKAr9SKWKsVpzpwSwNf/LcTa0LS0L8BOxO8UsDIMIW7QJjksx9xkLmz30W9lMemwG1DURBCHIuu7MB9iCOhiOjAgfGAiJUFnt0O3K11pvHiYhG+TAOfpwccGOvtInT3mv07v3RlD4/evYxNn0K3vVGfKOC6YUI36cKP0gPjQ8a0OnBgHDch2gUyXuwQbiVkB5hprlHzgzm85jXEA2SqgPNLKCI0cGBcwAeaAd2kmdXA2Zu1qORmOtgNo1JUHA183h04s3yKuN96yco2//b1Y1xwuU/cbG/WJoZ5VH2xFxq7YcU1DQ+4cx/2+0S0C4R3mGfnoDtX+YTBrm7nNcQDCCjghBCFEPIcIeTPRTygIJyNJzFcKNUZOzKmgY+DrLJZwFnnslIrpNaVVAoK+qdUwMcduJgCzrgYVMA36mj3Rk5wURb2YTKaKe1fnbgP+30iOgnQyUMJsRJ2hzreOlbn6gFnsKvbrLlQfh7ACwJuJ5QkPvDqjG8o1oGPg6yyqYGzziXNzqBcyJ2ihGLdn4gPDnZbD2zWAzPatz1OlHEBz0IHbhVXP2lI2H1U0pFQVqoFFJXw1WrX5jxC74YdXmZGAyeEnAHwYwA+KebhBJPIhTLrVB4r4BkNsmJUigqa5TzW6um9sKrFvJNGOM8pTGBs+RQiodiP/YLHfeKG2dOYXc1Zp5aBDnxpDh04uw/RMgYhBJsRXnD2oXr/nFII3bDOO0sulN8A8E8ABPp6CCEfJ4Q8Qwh55uDgIPEdjQ8xo98kraUSivkczq7N9ku0JBQjs1Gybs7fuZSqL7ZSOD0NnBCCe9drOCtgq9HbVqsoKAQfeef02jTGncsVlPK5qQ48C4eY923UUCsqeNua+B2sjHvXazizUknFBbLVLIdKKN98/RjFfA73rM6/gD/QqqNZzk/YdtMm8TuNEPIRAPuU0mcJIY8HfR+l9BMAPgEAjz32GP86DQ9xDjE3G2V861cvzNwR1ctWB36zbxXwrE5iAsC//dn3IpfiqXy5qOCoN4KqmXMv4ADw5//4B5EXsKjiXXcv49v/7GLoa0fJEdy3UXe84Ky5yIKE8qGHN/HsP30y1auF/+IH7sPH3n82lfOW1lIZV97s+P4dpVZ2zQ89sI7iKSyX/rF33IEnz7Xm+kE+y7P8AIAfJ4S8AuD3AXyIEPK7Qh6VD3E0cEDM5SwbEGGXbFnMQmEUlOTZ6DxUCjnc6Fr2rnlr4ABQzOeEbRriee1sb4ydKMMMSSiEkNQfZy5HUitirAP3W612+c0Ort8cBLqH0oaQ9J53EIkLOKX0VyilZyilZwH8NIC/opT+jLBH5mF4CpeprBC9ddMq4CIGRW5VKgXFKeD1OeagnBbbG3W8ftSHqhlQ9ey4ULLOVrOMgWY4+fxuLl3ZQ44ATzy8eQqP7HRY/Gs+mzgSiiiYFPDmzQEqBeVULsuyQqWoQDOsrohNRt7KbG/WQSnwymHPdYgpXx9pw/RlPyfKpcu7eM/ZVazV56dBnzZCXnGU0i9QSj8i4raCOM0Cfv3mILMWwnnh7j7nmUR4WrAhlZ393thGmIFDzKwTtFrt1cMeXtw9OTX55LTITMsw1A0U87m5jse6O/CsWgjnhXv7UdbWziXhvvU6CLFCrbJkI8w6bJjH24FfurwHALhwLtj+eSuSnQLOuZFeJEwDt4KsZAEPozLRgd/6BbxSVHDXcgU7B91MDfJknaBx+ktXdnHujibuXk3PHrmIZOYVx7uRXiRuO1yWHSjzoOLKWDkNG+FpwEKt5CHm/CgXFCxXCxPDPDe6Qzzz6lHo8NWtSoYKON9GepG4JwplBx6Ou3jdTgX82kEP6og/KVMyO61GeWK58Wev7IHS4OyaW5nMvOKsjfRzLuATHbgs4GHcbhIKYIU1DTQD1270UJrz+cztTMuzmefSlT3cvVrBw1vitv9khewUcG3+Ekopn3Om+6QLJRwmoVi5JJl5Wc0Ec6JcfrMju+854t6N2R3q+OuXbuDCua3b8gM0M6+6oW7MfWksW6sGZHuMfh6wDvx2kU+AcVjTK4c9qX/Pka1mGTe6Q+iGiS9+5wAjw7wt5RMgUwV8/i4UYFyQpIQSDitg804iPE3WakUsVQqgVB5gzpPWUhmUAgfdIZ66vIu1WhHf+7aV035Yp0LGCvj83yROAZcdeChMQqmlsOl8USGEODKKtBDODzbM83p7gM+/uI8feXsr1ZyfRSYzr7qhNn8XCjCeKpQdeDi3o4QCjLfOyA58fjAv+J984zpOhvptaR9kZKaAj3STayO9aOp24ZaHmOFUbkMJBRhvfpFj9PPDKeDPXUe1qOAD96+f8iM6PTJTwE9PA5cdOA+OhHKbdeCsgM/7gP12Zq1WREEh6I8MPP7Qxm199ZOZV91pDPIAUgPnhRXw201C2ZYSytzJ5Qg2G1YXfuHc7ek+YWSngJ+CDxwYd5S3Q0DTLJTtD9fbIQvczd0rFRSVnCzgc6bVLCGfI/jh2yj724/MVCX1FHzgAPD+7XXsddTbZjglKXklhx99ZAvv21477YcyV/JKDv/p957Bu84snfZDua24eH4L77p7+bafz8hEATdMCs2gpyKhPHmuhSdvs4jKpPzmz3zvaT+EU+HXf+odp/0Qbjv+yw9un/ZDWAgy0VaOnGUO8jJVIpFIGJko4Gzrt8ybkEgkkjGZqIhxN9JLJBLJ7UAmKuJQkxKKRCKReMlGAZcSikQikUyRiYp4GhvpJRKJZNHJREV0OnA5LCGRSCQO2SjgmuzAJRKJxEsmKqKUUCQSiWSaTFREJqHIvAmJRCIZk5ECLjtwiUQi8ZKJiuho4LIDl0gkEodsFHDpA5dIJJIpMlERpYQikUgk02SiIg5lGqFEIpFMkbiAE0LuJoR8nhDyAiHkMiHk50U+MDdDzQAhQEEhad2FRCKRZI5ZFjroAP5bSunXCSENAM8SQp6mlF4R9Ngc2EJjQmQBl0gkEkbiDpxS+hal9Ov2f58AeAHAXaIemBurgEv5RCKRSNwI0cAJIWcBPArgb33+7uOEkGcIIc8cHBwkuv2Htxq4eF6uNZNIJBI3hFI62w0QUgfwRQC/Rin992Hf+9hjj9FnnnlmpvuTSCSS2w1CyLOU0se8X5+pAyeEFAD8MYDfiyreEolEIhHLLC4UAuC3ALxAKf0/xD0kiUQikfAwSwf+AQD/AMCHCCHfsP/3Hwl6XBKJRCKJILGNkFL61wCkr08ikUhOiUxMYkokEolkGlnAJRKJJKPIAi6RSCQZRRZwiUQiySgzD/LEujNCDgC8mvCfrwO4IfDhZAX5vG8/btfnLp93MG+jlG54vzjXAj4LhJBn/CaRbnXk8779uF2fu3ze8ZESikQikWQUWcAlEokko2SpgH/itB/AKSGf9+3H7frc5fOOSWY0cIlEIpFMkqUOXCKRSCQuZAGXSCSSjJKJAk4I+TAh5DuEkKuEkF8+7ceTFoSQ3yaE7BNCnnd9bZUQ8jQh5CX7/1dO8zGmQdCC7Fv9uRNCyoSQrxFCvmk/7//R/vot/bwZhBCFEPIcIeTP7T/f8s+bEPIKIeTbdnrrM/bXEj/vhS/ghBAFwP8F4EcBnAPwUULIudN9VKnxOwA+7PnaLwP4HKX0AQCfs/98q8EWZL8dwPcD+K/s3/Gt/tyHAD5EKX0XgHcD+DAh5Ptx6z9vxs/D2qXLuF2e9w9TSt/t8n4nft4LX8ABvBfAVUrpNUrpCMDvA/iJU35MqUAp/RKAtufLPwHgU/Z/fwrAT87zMc2DkAXZt/RzpxZd+48F+38Ut/jzBgBCyBkAPwbgk64v3/LPO4DEzzsLBfwuAK+7/vyG/bXbhRal9C3AKnQANk/58aSKZ0H2Lf/cbRnhGwD2ATxNKb0tnjeA3wDwTwCYrq/dDs+bArhECHmWEPJx+2uJn3fihQ5zxG9phPQ+3oLYC7L/GMB/TSntWFv7bm0opQaAdxNClgF8hhDyyCk/pNQhhHwEwD6l9FlCyOOn/HDmzQcopW8SQjYBPE0IeXGWG8tCB/4GgLtdfz4D4M1TeiynwR4h5A4AsP9//5QfTyoELMi+LZ47AFBKbwL4AqwzkFv9eX8AwI8TQl6BJYl+iBDyu7j1nzcopW/a/78P4DOwJOLEzzsLBfzvADxACLmXEFIE8NMA/uyUH9M8+TMAH7P/+2MA/vQUH0sqhCzIvqWfOyFkw+68QQipAPgRAC/iFn/elNJfoZSeoZSehfV+/itK6c/gFn/ehJAaIaTB/hvABQDPY4bnnYlJTHtZ8m8AUAD8NqX01073EaUDIeTTAB6HFS+5B+BXAfwJgH8H4B4ArwH4e5RS70FnpiGE/ACALwP4Nsaa6H8PSwe/ZZ87IeSdsA6tFFjN1L+jlP5zQsgabuHn7caWUH6RUvqRW/15E0Lug9V1A5Z8/f9QSn9tluediQIukUgkkmmyIKFIJBKJxAdZwCUSiSSjyAIukUgkGUUWcIlEIskosoBLJBJJRpEFXCKRSDKKLOASiUSSUf5/38MmkhvTWjAAAAAASUVORK5CYII=\n"}}],"execution_count":0},{"cell_type":"code","source":["# summarize the dot counts\ndf['dots'].value_counts()"],"metadata":{"application/vnd.databricks.v1+cell":{"title":"","showTitle":false,"inputWidgets":{},"nuid":"b1a4070a-8433-4eea-9549-d62ed1d2eddb"}},"outputs":[{"output_type":"display_data","metadata":{"application/vnd.databricks.v1+output":{"datasetInfos":[],"data":"7 92\n6 79\n8 73\n9 47\n5 46\n10 40\n4 35\n3 32\n11 27\n12 15\n2 14\nName: dots, dtype: int64
","removedWidgets":[],"addedWidgets":{},"metadata":{},"type":"html","arguments":{}}},"output_type":"display_data","data":{"text/html":["\n7 92\n6 79\n8 73\n9 47\n5 46\n10 40\n4 35\n3 32\n11 27\n12 15\n2 14\nName: dots, dtype: int64
"]}}],"execution_count":0},{"cell_type":"code","source":["# plot the frequencies as counts\nh = df.hist(column='dots', bins=11)"],"metadata":{"application/vnd.databricks.v1+cell":{"title":"","showTitle":false,"inputWidgets":{},"nuid":"633ff3f0-8db0-4989-bb7b-aec6b0d7b104"}},"outputs":[{"output_type":"display_data","metadata":{"application/vnd.databricks.v1+output":{"datasetInfos":[],"data":"\n","removedWidgets":[],"addedWidgets":{},"metadata":{},"type":"image","arguments":{}}},"output_type":"display_data","data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAXAAAAEICAYAAABGaK+TAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAPyUlEQVR4nO3de2ydd33H8fdnDawXQy8rs0LKMIyqgJpxqcUKlZBDh9TRjlRsQKeCUtYt/3DpWKYtZZrYHwMiMRBIu6kC1mh0BAjdWlGNtQt4MAkqksIIJbBWEEpDSbi0pekqSrbv/vBTYRKnPjk+F//s90uKfM5zbt+fYr/z+LGfk1QVkqT2/MK4B5Ak9ceAS1KjDLgkNcqAS1KjDLgkNcqAS1KjDLhWjSTXJ/nLcc8hDYoBl46SpJI8a9xzSIsx4JLUKAOuFSvJC5LckeShJB8FTp532x8kuTvJj5LcnOSp3fbPdnf5rySHk7w2ydlJPpnkge7+n0vi147Gzk9CrUhJngj8C/CPwFnAx4Hf7m57GfAu4DXAWuDbwA6Aqnpp9xTPq6qJqvoosAW4F3gKMAm8DfA9KDR2Blwr1YXAE4D3VdVPq2on8MXutiuBD1XVHVX1E+Ba4MVJpo7zXD9lLvRP757rc+WbCGkZMOBaqZ4KHDgqtN+ed9tjl6mqw8APgXXHea53A3cDtyb5ZpKtQ5hXOmEGXCvVfcC6JJm37Ve6j98Fnv7YxiSnAb8EHFjoiarqoaraUlXPBH4L+KMkFw9nbKl3Blwr1eeBI8BbkqxJ8irgRd1t/wS8Icnzk/wi8E7g9qra391+EHjmY0+U5LIkz+r+Mfgx8L/dH2msDLhWpKp6FHgVcBVwP/Ba4Mbutl3AnwOfYG5P/VeBK+Y9/C+A7d1vnbwGOBf4d+Awc/8w/G1VzY5iHdLjiT+LkaQ2uQcuSY0y4JLUKAMuSY0y4JLUqDWjfLGzzz67pqam+nrsww8/zGmnnTbYgZY517w6uObVYSlr3rNnzw+q6ilHbx9pwKempti9e3dfj52dnWVmZmawAy1zrnl1cM2rw1LWnOTbC233EIokNcqAS1KjDLgkNcqAS1KjDLgkNcqAS1KjDLgkNcqAS1KjDLgkNWqkZ2JKozC19ZaRvdb+bZeO7LWko7kHLkmNMuCS1CgDLkmNMuCS1CgDLkmNMuCS1CgDLkmNMuCS1CgDLkmNMuCS1CgDLkmNMuCS1CgDLkmNMuCS1CgDLkmNMuCS1CgDLkmNMuCS1CgDLkmNMuCS1CgDLkmNMuCS1CgDLkmN6ingSd6a5M4kX03ykSQnJzkryW1J7uo+njnsYSVJP7NowJOsA94CTFfV+cBJwBXAVmBXVZ0L7OquS5JGpNdDKGuAU5KsAU4FvgtsBLZ3t28HLh/4dJKk40pVLX6n5BrgHcAjwK1VdWWSB6rqjHn3ub+qjjmMkmQzsBlgcnLygh07dvQ16OHDh5mYmOjrsa1yzf3Ze+DBAU2zuPXrTl/yc/j3vDosZc0bNmzYU1XTR29fs9gDu2PbG4FnAA8AH0/yul5fuKquA64DmJ6erpmZmV4f+nNmZ2fp97Gtcs39uWrrLYMZpgf7r5xZ8nP497w6DGPNiwYc+A3gW1X1fYAkNwIvAQ4mWVtV9yVZCxwa6GRaMaZOIKhb1h8ZaYCllvVyDPwe4MIkpyYJcDGwD7gZ2NTdZxNw03BGlCQtZNE98Kq6PclO4A7gCPAl5g6JTAAfS3I1c5F/9TAHlST9vF4OoVBVbwfeftTmnzC3Ny5JGgPPxJSkRhlwSWqUAZekRhlwSWqUAZekRhlwSWqUAZekRhlwSWqUAZekRvV0JqakhZ3IG3Udz4m8gdf+bZcu+fW0crgHLkmNMuCS1CgDLkmNMuCS1CgDLkmNMuCS1CgDLkmNMuCS1CgDLkmNMuCS1CgDLkmNMuCS1CgDLkmNMuCS1CgDLkmNMuCS1CgDLkmNMuCS1CgDLkmNMuCS1CgDLkmNMuCS1CgDLkmNMuCS1CgDLkmNMuCS1KieAp7kjCQ7k3w9yb4kL05yVpLbktzVfTxz2MNKkn6m1z3w9wOfqqpnA88D9gFbgV1VdS6wq7suSRqRRQOe5MnAS4EPAlTVo1X1ALAR2N7dbTtw+XBGlCQtJFX1+HdIng9cB3yNub3vPcA1wIGqOmPe/e6vqmMOoyTZDGwGmJycvGDHjh19DXr48GEmJib6emyrVsqa9x54sOf7Tp4CBx8Z4jDL0Imsef2604c7zIislM/tE7GUNW/YsGFPVU0fvb2XgE8DXwAuqqrbk7wf+DHw5l4CPt/09HTt3r27n/mZnZ1lZmamr8e2aqWseWrrLT3fd8v6I7xn75ohTrP8nMia92+7dMjTjMZK+dw+EUtZc5IFA97LMfB7gXur6vbu+k7ghcDBJGu7J18LHOprMklSXxYNeFV9D/hOkvO6TRczdzjlZmBTt20TcNNQJpQkLajX71XfDNyQ5InAN4E3MBf/jyW5GrgHePVwRpQkLaSngFfVl4Fjjr8wtzcuSRoDz8SUpEYZcElqlAGXpEYZcElqlAGXpEYZcElqlAGXpEYZcElqlAGXpEYZcElqlAGXpEYZcElqlAGXpEYZcElqlAGXpEYZcElqlAGXpEYZcElqlAGXpEYZcElqlAGXpEYZcElqlAGXpEatGfcAkno3tfWWkb7e/m2XjvT1dGLcA5ekRrkHvgqNei9O0nC4By5JjTLgktQoAy5JjTLgktQoAy5JjTLgktQoAy5JjTLgktQoAy5JjTLgktSongOe5KQkX0ryye76WUluS3JX9/HM4Y0pSTraieyBXwPsm3d9K7Crqs4FdnXXJUkj0lPAk5wDXAp8YN7mjcD27vJ24PKBTiZJelypqsXvlOwE3gU8CfjjqrosyQNVdca8+9xfVcccRkmyGdgMMDk5ecGOHTv6GvTw4cNMTEz09dhWDWvNew88OPDnHJTJU+DgI+OeYrRc85z1604fzzAjspSv5w0bNuypqumjty/6drJJLgMOVdWeJDMn+sJVdR1wHcD09HTNzJzwUwAwOztLv49t1bDWfNUyfjvZLeuP8J69q+tdjl3znP1XzoxnmBEZxtdzL581FwGvTPIK4GTgyUk+DBxMsraq7kuyFjg00MkkSY9r0WPgVXVtVZ1TVVPAFcCnq+p1wM3Apu5um4CbhjalJOkYS/k98G3Ay5PcBby8uy5JGpETOvBWVbPAbHf5h8DFgx9JktQLz8SUpEYZcElqlAGXpEYZcElqlAGXpEatrtO/lrGpBc6O3LL+yLI+a1LSeLkHLkmNMuCS1CgDLkmNMuCS1CgDLkmNMuCS1Ch/jfA4Fvq1PklaTtwDl6RGGXBJapQBl6RGGXBJapQBl6RGGXBJapQBl6RGGXBJapQBl6RGGXBJapSn0ktaFkb99hX7t1060tcbBvfAJalRBlySGmXAJalRBlySGmXAJalRBlySGmXAJalRBlySGmXAJalRBlySGmXAJalRBlySGrVowJM8LclnkuxLcmeSa7rtZyW5Lcld3cczhz+uJOkxveyBHwG2VNVzgAuBNyZ5LrAV2FVV5wK7uuuSpBFZNOBVdV9V3dFdfgjYB6wDNgLbu7ttBy4f0oySpAWkqnq/czIFfBY4H7inqs6Yd9v9VXXMYZQkm4HNAJOTkxfs2LGjr0EPHz7MxMREX4/tx94DD47stY5n8hQ4+Mi4pxgt17w6LIc1r193+khfbykN27Bhw56qmj56e88BTzIB/Afwjqq6MckDvQR8vunp6dq9e/eJTd6ZnZ1lZmamr8f2Y9RvLr+QLeuP8J69q+v/3HDNq8NyWPOo/0OHpTQsyYIB7+m3UJI8AfgEcENV3dhtPphkbXf7WuBQX5NJkvrSy2+hBPggsK+q3jvvppuBTd3lTcBNgx9PknQ8vXwPcxHwemBvki93294GbAM+luRq4B7g1UOZUJK0oEUDXlX/CeQ4N1882HEkSb3yTExJapQBl6RGGXBJapQBl6RGGXBJatTqOv1LkjqjPtv6+ktOG/hzugcuSY1qZg9874EHuWoZvD+JJC0X7oFLUqMMuCQ1yoBLUqMMuCQ1yoBLUqMMuCQ1yoBLUqMMuCQ1yoBLUqMMuCQ1yoBLUqMMuCQ1yoBLUqMMuCQ1yoBLUqMMuCQ1yoBLUqMMuCQ1yoBLUqMMuCQ1yoBLUqMMuCQ1yoBLUqMMuCQ1yoBLUqMMuCQ1yoBLUqMMuCQ1akkBT3JJkm8kuTvJ1kENJUlaXN8BT3IS8DfAbwLPBX43yXMHNZgk6fEtZQ/8RcDdVfXNqnoU2AFsHMxYkqTFpKr6e2DyO8AlVfX73fXXA79eVW866n6bgc3d1fOAb/Q569nAD/p8bKtc8+rgmleHpaz56VX1lKM3rlnCMFlg2zH/GlTVdcB1S3iduRdLdlfV9FKfpyWueXVwzavDMNa8lEMo9wJPm3f9HOC7SxtHktSrpQT8i8C5SZ6R5InAFcDNgxlLkrSYvg+hVNWRJG8C/g04CfhQVd05sMmOteTDMA1yzauDa14dBr7mvn+IKUkaL8/ElKRGGXBJatSyD3iSpyX5TJJ9Se5Mcs24ZxqFJCcl+VKST457llFIckaSnUm+3v1dv3jcMw1bkrd2n9NfTfKRJCePe6ZBS/KhJIeSfHXetrOS3Jbkru7jmeOccdCOs+Z3d5/bX0nyz0nOGMRrLfuAA0eALVX1HOBC4I2r5JT9a4B94x5ihN4PfKqqng08jxW+9iTrgLcA01V1PnO/CHDFeKcaiuuBS47athXYVVXnAru66yvJ9Ry75tuA86vq14D/Bq4dxAst+4BX1X1VdUd3+SHmvrDXjXeq4UpyDnAp8IFxzzIKSZ4MvBT4IEBVPVpVD4x1qNFYA5ySZA1wKivwPIqq+izwo6M2bwS2d5e3A5ePcqZhW2jNVXVrVR3prn6BufNmlmzZB3y+JFPAC4DbxzzKsL0P+BPg/8Y8x6g8E/g+8A/dYaMPJDlt3EMNU1UdAP4KuAe4D3iwqm4d71QjM1lV98HcDhrwy2OeZ9R+D/jXQTxRMwFPMgF8AvjDqvrxuOcZliSXAYeqas+4ZxmhNcALgb+rqhcAD7Pyvq3+Od1x343AM4CnAqcled14p9KwJfkz5g4L3zCI52si4EmewFy8b6iqG8c9z5BdBLwyyX7m3uHxZUk+PN6Rhu5e4N6qeuw7q53MBX0l+w3gW1X1/ar6KXAj8JIxzzQqB5OsBeg+HhrzPCORZBNwGXBlDegEnGUf8CRh7tjovqp677jnGbaquraqzqmqKeZ+qPXpqlrRe2ZV9T3gO0nO6zZdDHxtjCONwj3AhUlO7T7HL2aF/+B2npuBTd3lTcBNY5xlJJJcAvwp8Mqq+p9BPe+yDzhze6SvZ25P9Mvdn1eMeygN3JuBG5J8BXg+8M7xjjNc3XcbO4E7gL3MfS2uuNPLk3wE+DxwXpJ7k1wNbANenuQu4OXd9RXjOGv+a+BJwG1dw/5+IK/lqfSS1KYW9sAlSQsw4JLUKAMuSY0y4JLUKAMuSY0y4JLUKAMuSY36f0DgI/VpiP8YAAAAAElFTkSuQmCC\n"}}],"execution_count":0},{"cell_type":"markdown","source":["In this simulated game, we notice:\n\n * we are not able to predice with certainty the next throw \n * some combinations occur with higher frequency \n * the shape of the tabulated data is roughly triangular"],"metadata":{"application/vnd.databricks.v1+cell":{"title":"","showTitle":false,"inputWidgets":{},"nuid":"3ff45e45-5721-4874-98e7-b583b10270a9"}}},{"cell_type":"markdown","source":["## Belief and probability\n\nSo, from this and maybe experience, we see that 7's occur more frequently than 12's, 5's and 9's about the same, etc, so we have a beleif. How do we go from a 'hunch' to a quantified understanding of the game? The answer is statistics and probability.\n\n\n
\n
\n
"],"metadata":{"application/vnd.databricks.v1+cell":{"title":"","showTitle":false,"inputWidgets":{},"nuid":"6fdbedcc-ba18-4ad6-9d96-56ffb1d98de0"}}},{"cell_type":"markdown","source":["## Sample space, outcomes and events\n\nTo get an understanding of probability, we need some definitions.\n\n1. outcomes -- mutually exclusive and exhaustive list of possible results in a model \n2. events -- sets containing zero or more outcomes, we define events we are interested in \n3. sample space -- set of all possible outcomes (must be collectively exhaustive and mutually exclusive). \n\nConsider the dice game.\n\nOutcomes: 2,3,4,5,6,7,8,9,10,11,12 \nEvents: up to us, what game we play, could be evens vs odds for instance \nSample space: 2,3,4,5,6,7,8,9,10,11,12 \n\nThrowing 3 coins, counting the heads, evens wins \n\nOutcomes: 0,1,2,3 \nEvents: {0,2}, {1,3} \nSample space: 0,1,2,3 \n\nTo conform with the set theory behind this, the event space (\\\\(\\mathcal{F}\\\\)) must conform to a series of conditions:\n\n1. the event space contains the sample space \\\\(S \\in \\mathcal{F}\\\\) \n2. the event space is closed under compliments, ie if \\\\(E \\in \\mathcal{F}, E^c \\in \\mathcal{F}\\\\) \n3. the event space is closed under countable unions, \\\\(E_i \\in \\mathcal{F}\\\\) for i=1,2,..., then \\\\((\\bigcup_{i=1}^{\\infty}E_i) \\in \\mathcal{F}\\\\)\n\nFor completeness, we would need to include the empty set and the sample space to both event lists if we had wanted to enumerate the events in the event space.\n\n\n\n
\n
\n
"],"metadata":{"application/vnd.databricks.v1+cell":{"title":"","showTitle":false,"inputWidgets":{},"nuid":"a30c73bd-f021-4383-b913-a679d6478cf7"}}},{"cell_type":"markdown","source":["### Probability Space and Probability\n\nArmed with some definitions of outcomes and events, we are finally ready to talk about probability.\n\nA probability space is a combination of a sample space, event space, and probability function. The probability function is a real-valued function mapping events to the interval [0,1]. The probability function adheres to the Axioms of Probability (Kolmogorov Axioms). These are summarized as:\n \n1. the probability of an event is a real number on the interval [0,1] \n \n $$0 \\le P(E) \\le 1$$ \n
\n2. the probability of at least one event occurring is 1 \n \n $$P(S) = 1$$ where S is the sample space \n
\n3. countable mutually exclusive sets of events satisfy the following \n \n $$P(\\bigcup_{i=1}^\\infty E_i) = \\sum_{i=1}^\\infty P(E_i)$$ \n
\n
\n
\n
"],"metadata":{"application/vnd.databricks.v1+cell":{"title":"","showTitle":false,"inputWidgets":{},"nuid":"cc55025e-aad4-457d-9c36-2719dafb601e"}}},{"cell_type":"markdown","source":["### GRADED EVALUATION (15 mins)\n\n1. You repeatedly roll a die (some large number of times, say 1M) and come up with the following probability of roll results for spots 1-6 in order: {0.14,0.10,0.20,0.14,0.14,0.28). The probability of rolling a 3 is greater than that of rolling a 4.\n\n a. True \n\n b. False \n \n \n2. The die in the previous question is fair. \n\n a. True \n\n b. False \n \n \n3. You toss a both a fair coin and a fair die simultaneously. The sample space is \n\n a. {(HT),(1,2,3,4,5,6)} \n\n b. {(H,1),(H,2),(H,3),(H,4),(H,5),(H,6),(T,1),(T,2),(T,3),(T,4),(T,5),(T,6)} \n \n \n4. In this game of tossing a coin and die, the die comes up 6. What is the probability of the coin landing heads?\n\n a. 0.5 \n\n b. 0.8 \n\n6. You do the above game twice, in the first trial, it came up (H,6). What is the probability that event will occur in the second go (0.00%)?\n\n a. 0.69\n\n b. 0.08 \n \n
\n
\n
"],"metadata":{"application/vnd.databricks.v1+cell":{"title":"","showTitle":false,"inputWidgets":{},"nuid":"2bf48d49-eed6-4805-a9a9-50a5f22c47e9"}}},{"cell_type":"code","source":[""],"metadata":{"application/vnd.databricks.v1+cell":{"title":"","showTitle":false,"inputWidgets":{},"nuid":"e01711d5-6591-43d6-829d-6ef785f53d23"}},"outputs":[],"execution_count":0}],"metadata":{"kernelspec":{"display_name":"Python 3","language":"python","name":"python3"},"language_info":{"mimetype":"text/x-python","name":"python","pygments_lexer":"ipython3","codemirror_mode":{"name":"ipython","version":3},"version":"3.9.4","nbconvert_exporter":"python","file_extension":".py"},"application/vnd.databricks.v1+notebook":{"notebookName":"Fundamentals-lecture1-belief-and-probability-unGRADED (1)","dashboards":[],"notebookMetadata":{"pythonIndentUnit":2},"language":"python","widgets":{},"notebookOrigID":2372252794354875}},"nbformat":4,"nbformat_minor":0}